Regupol® Vibration 200

Standard forms of delivery, ex Lebanon, PA

Rolls
- **Thickness:** 17 mm, dimpled on underside
- **Length:** 33' (10,000 mm)
- **Width:** 50" (1,250 mm)

Max. static load
2.9 psi

Peak loads (rare, short-term loads)
7.3 psi

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static modulus of elasticity</td>
<td>2.9 - 11.6 psi</td>
</tr>
<tr>
<td>Dynamic modulus of elasticity</td>
<td>7.3 - 55.1 psi</td>
</tr>
<tr>
<td>Mechanical loss factor</td>
<td>0.22 [/]</td>
</tr>
<tr>
<td>Compression set</td>
<td>3.1 [/]</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>17.4 psi</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>40 [/]</td>
</tr>
<tr>
<td>Tear resistance</td>
<td>5.71 lbs/in</td>
</tr>
<tr>
<td>Sliding friction</td>
<td>0.7 [/] Steel (dry)</td>
</tr>
<tr>
<td>Compression hardness</td>
<td>0.8 [/] Concrete (dry)</td>
</tr>
<tr>
<td>Force reduction</td>
<td>73 [/]</td>
</tr>
<tr>
<td>Rebound elasticity</td>
<td>14 [/]</td>
</tr>
<tr>
<td>Compression hardness</td>
<td>14 [/] Compressive stress at 25 % deformation</td>
</tr>
<tr>
<td>Rebound elasticity</td>
<td>14 [/]</td>
</tr>
<tr>
<td>Force reduction</td>
<td>73 [/]</td>
</tr>
</tbody>
</table>

Material properties:
- **Static modulus of elasticity**
 - **Based on EN 826**
 - **2.9 - 11.6 psi**
 - **0.02 - 0.08 psi N/mm²**
- **Dynamic modulus of elasticity**
 - **Based on DIN 53513**
 - **7.3 - 55.1 psi**
 - **0.05 - 0.38 psi N/mm²**
- **Mechanical loss factor**
 - **DIN 53513**
 - **0.22 [/]**
- **Compression set**
 - **Based on DIN EN ISO 1856**
 - **3.1 [/]**
- **Tensile strength**
 - **Based on DIN EN ISO 1798**
 - **17.4 psi**
- **Elongation at break**
 - **Based on DIN EN ISO 1798**
 - **40 [/]**
- **Tear resistance**
 - **Based on DIN ISO 34-1**
 - **5.71 lbs/in**
- **Sliding friction**
 - **in-house laboratory**
 - **0.7 [/]**
 - **in-house laboratory**
 - **0.8 [/]**
- **Compression hardness**
 - **Based on DIN EN ISO 3386-2**
 - **14 kPa**
- **Force reduction**
 - **DIN EN 14904**
 - **73 [/]**

Material must be protected against moisture, humidity (>50%) and wetness at all times. Please consult Regupol America for further information and guidelines for transportation, storage and installation.
Load Ranges

<table>
<thead>
<tr>
<th>N/mm²</th>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>2.9</td>
</tr>
<tr>
<td>0.05</td>
<td>7.3</td>
</tr>
<tr>
<td>0.10</td>
<td>14.5</td>
</tr>
<tr>
<td>0.12</td>
<td>17.4</td>
</tr>
<tr>
<td>0.15</td>
<td>21.8</td>
</tr>
<tr>
<td>0.30</td>
<td>43.5</td>
</tr>
<tr>
<td>0.80</td>
<td>116.0</td>
</tr>
<tr>
<td>1.50</td>
<td>218.0</td>
</tr>
</tbody>
</table>

Max. static load

Load Deflection

Examination of deflection in accordance to DIN EN 826, between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.
Vibration Isolation

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with Regupol® vibration 200. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Natural Frequency

Natural frequency of a single-degree-of-freedom system (SDOF system) considering the dynamic stiffness of Regupol® vibration 200 on a rigid base. Dimensions of test specimens 300 mm x 300 mm.
Modulus of Elasticity

Regupol® vibration 200

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of ± 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 34 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic, Tested in accordance to DIN 53513.

Dynamic Stiffness

Regupol® vibration 200

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of ± 0.25 mm. Dimension of specimens 300 x 300 x 34 mm; static stiffness as a result of the tangent modulus of the spring characteristic, Tested in accordance with DIN 53513.
Influence of Amplitude

Regupol® vibration 200

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation.

Sinusoidal excitation at a constant mean load of 0.011 N/mm², dimensions of the specimens 300 x 300 x 51 mm.

Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Regupol® vibration 200

Change of the mechanical loss factor due to changes in amplitudes.

Sinusoidal excitation at a constant mean load of 0.011 N/mm², dimensions of the specimens 300 x 300 x 51 mm.
Long-Term Creep Test

Regupol America, LLC is a product manufacturer and does not represent itself as a consultant, engineer, or advisor in construction methods, standards, and compliance. Therefore, Regupol America only warrants its products under its standard limited warranty (available by request), and does not represent or warrant any advice, suggestions, instructions, whether formal or informal, oral or written, in conjunction with any sales of its products. Any such advice is not intended for a particular purpose and should not be acted or relied upon as such. Any such advice is not represented as being all-inclusive, correct, complete or up-to-date.

The information and data contained herein are based on industry accepted testing, manufacturing tolerances and prior product usage as set forth. It is intended as descriptive of the performance characteristics and capabilities of Regupol/Regufoam and does not certify applicability for any particular or specific project. Technical assistance, calculations and design recommendations are available from Regupol America, and are subject to terms and conditions provided upon request.